Metrics

calc_retrieval_metrics

oml.functional.metrics.calc_retrieval_metrics(retrieved_ids: Sequence[LongTensor], gt_ids: Sequence[LongTensor], query_categories: Optional[Union[LongTensor, ndarray]] = None, cmc_top_k: Tuple[int, ...] = (5,), precision_top_k: Tuple[int, ...] = (5,), map_top_k: Tuple[int, ...] = (5,), reduce: bool = True, verbose: bool = True) Dict[str, Any][source]

Function to compute different retrieval metrics.

Parameters
  • retrieved_ids – First gallery indices retrieved for every query with the size of n_query. Every index is within the range (0, n_gallery - 1).

  • gt_ids – Gallery indices relevant to every query with the size of n_query. Every element is within the range (0, n_gallery - 1)

  • query_categories – Categories of queries with the size of n_query to compute metrics for each category.

  • cmc_top_k – Values of k to calculate cmc@k (Cumulative Matching Characteristic)

  • precision_top_k – Values of k to calculate precision@k

  • map_top_k – Values of k to calculate map@k (Mean Average Precision)

  • reduce – If False return metrics for each query without averaging

  • verbose – Set True to make the function verbose.

Returns

Metrics dictionary.

calc_retrieval_metrics_rr

oml.metrics.embeddings.calc_retrieval_metrics_rr(rr: RetrievalResults, query_categories: Optional[Union[LongTensor, ndarray]] = None, cmc_top_k: Tuple[int, ...] = (5,), precision_top_k: Tuple[int, ...] = (5,), map_top_k: Tuple[int, ...] = (5,), reduce: bool = True, verbose: bool = True) Dict[str, Any][source]

Function to compute different retrieval metrics.

Parameters
  • rr – An instance of RetrievalResults.

  • query_categories – Categories of queries with the size of n_query to compute metrics for each category.

  • cmc_top_k – Values of k to calculate cmc@k (Cumulative Matching Characteristic)

  • precision_top_k – Values of k to calculate precision@k

  • map_top_k – Values of k to calculate map@k (Mean Average Precision)

  • reduce – If False return metrics for each query without averaging

  • verbose – Set True to make the function verbose.

Returns

Metrics dictionary.

calc_cmc

oml.functional.metrics.calc_cmc(gt_tops: Sequence[BoolTensor], n_gts: List[int], top_k: Tuple[int, ...], verbose: bool = False) List[FloatTensor][source]

Function to compute Cumulative Matching Characteristics (CMC) at cutoffs top_k.

cmc@k for a given query equals to 1 if there is at least 1 instance related to this query in top k gallery instances sorted by distances to the query, and 0 otherwise. The final cmc@k could be obtained by averaging the results calculated for each query.

Parameters
  • gt_tops – Indicators that show if retrievied items are correct or not: gt_tops[i][j] is True if j-th gallery item is related to the i-th query item.

  • n_gts – Number of existing ground truths for every query.

  • top_k – Values of k to calculate cmc@k.

  • verbose – Set True to see progress bar.

Returns

List of cmc@k tensors computed for every query.

\[\begin{split}\textrm{cmc}@k = \begin{cases} 1, & \textrm{if top-}k \textrm{ ranked gallery samples include an output relevant to the query}, \\ 0, & \textrm{otherwise}. \end{cases}\end{split}\]

Example

>>> gt_tops = [
...     BoolTensor([1, 0]),
...     BoolTensor([0, 1, 1]),
...     BoolTensor([0, 0]),
...     BoolTensor([])
... ]
>>> n_gts = [2, 2, 1, 0]
>>> calc_cmc(gt_tops, n_gts, top_k=(1, 2))
[tensor([1., 0., 0., 1.]), tensor([1., 1., 0., 1.])]

calc_precision

oml.functional.metrics.calc_precision(gt_tops: Sequence[BoolTensor], n_gts: List[int], top_k: Tuple[int, ...], verbose: bool = False) List[FloatTensor][source]

Function to compute Precision at cutoffs top_k.

precision@k for a given query is a fraction of the relevant gallery instances among the top k instances sorted by distances from the query to the gallery. The final precision@k could be obtained by averaging the results calculated for each query.

Parameters
  • gt_tops – Indicators that show if retrievied items are correct or not: gt_tops[i][j] is True if j-th gallery item is related to the i-th query item.

  • n_gts – Number of existing ground truth for every query.

  • top_k – Values of k to calculate precision@k.

  • verbose – Set True to see progress bar.

Returns

List of precision@k tensors computed for every query.

Given a list \(g=[g_1, \ldots, g_k]\) of ground truth top \(k\) closest elements from the gallery to a given query (\(g_i\) is 1 if \(i\)-th element from the gallery is relevant to the query and 0 otherwise), and the total number of relevant elements from the gallery \(n\), the \(\textrm{precision}@k\) for the query is defined as

\[\textrm{precision}@k = \frac{1}{\min{\left(k, n\right)}}\sum\limits_{i = 1}^k g_i\]

It’s worth mentioning that OML version of \(\textrm{precision}@k\) differs from the commonly used by the denominator of the fraction. The OML version takes into account the total amount of relevant elements in the gallery, so it will not penalize the ideal model if \(n < k\).

For instance, let \(n = 3\) and \(g = [1, 1, 1, 0, 0]\). Then by using the common definition of \(\textrm{precision}@k\) we get

\[\begin{split}\begin{align} \textrm{precision}@1 &= \frac{1}{1}, \textrm{precision}@2 = \frac{2}{2}, \textrm{precision}@3 = \frac{3}{3}, \\ \textrm{precision}@4 &= \frac{3}{4}, \textrm{precision}@5 = \frac{3}{5}, \textrm{precision}@6 = \frac{3}{6} \\ \end{align}\end{split}\]

But with OML definition of \(\textrm{precision}@k\) we get

\[\begin{split}\begin{align} \textrm{precision}@1 &= \frac{1}{1}, \textrm{precision}@2 = \frac{2}{2}, \textrm{precision}@3 = \frac{3}{3} \\ \textrm{precision}@4 &= \frac{3}{3}, \textrm{precision}@5 = \frac{3}{3}, \textrm{precision}@6 = \frac{3}{3} \\ \end{align}\end{split}\]
See:

Evaluation measures (information retrieval). Precision@k

Example

>>> gt_tops = [
...     BoolTensor([1, 0]),
...     BoolTensor([0, 1, 1]),
...     BoolTensor([0, 0]),
...     BoolTensor([])
... ]
>>> n_gts = [2, 3, 5, 2]
>>> calc_precision(gt_tops, n_gts, top_k=(1, 2))
[tensor([1., 0., 0., 0.]), tensor([0.5000, 0.5000, 0.0000, 0.0000])]

calc_map

oml.functional.metrics.calc_map(gt_tops: Sequence[BoolTensor], n_gts: List[int], top_k: Tuple[int, ...], verbose: bool = False) List[FloatTensor][source]

Function to compute Mean Average Precision (MAP) at cutoffs top_k.

map@k for a given query is the average value of the precision considered as a function of the recall. The final map@k could be obtained by averaging the results calculated for each query.

Parameters
  • gt_tops – Indicators that show if retrievied items are correct or not: gt_tops[i][j] is True if j-th gallery item is related to the i-th query item.

  • n_gts – Number of existing ground truth for every query.

  • top_k – Values of k to calculate map@k.

  • verbose – Set True to see progress bar.

Returns

List of map@k tensors computed for every query.

Given a list \(g=[g_1, \ldots, g_k]\) of ground truth top \(k\) closest elements from the gallery to a given query (\(g_i\) is 1 if \(i\)-th element from the gallery is relevant to the query and 0 otherwise), and the total number of relevant elements from the gallery \(n\), the \(\textrm{map}@k\) for the query is defined as

\[\begin{split} \textrm{map}@k &= \frac{1}{n_k}\sum\limits_{i = 1}^k \frac{n_i}{i} \times \textrm{rel}(i) \end{split}\]

where \(\textrm{rel}(i)\) is 1 if \(i\)-th element from the top \(i\) closest elements from the gallery to the query is relevant to the query, and 0 otherwise; and \(n_i = \sum\limits_{j = 1}^{i}g_j\), which is the number of the relevant predictions among the first \(i\) outputs.

See:

Example

>>> gt_tops = [
...    BoolTensor([1, 0]),
...    BoolTensor([0, 1]),
...    BoolTensor([0, 0, 0, 0]),
...    BoolTensor([])
... ]
>>> n_gts = [1, 1, 2, 0]
>>> calc_map(gt_tops, n_gts, top_k=(1, 2))
[tensor([1., 0., 0., 1.]), tensor([1.0000, 0.5000, 0.0000, 1.0000])]

calc_fnmr_at_fmr

oml.functional.metrics.calc_fnmr_at_fmr(pos_dist: ndarray, neg_dist: ndarray, fmr_vals: Tuple[float, ...] = (0.1,)) FloatTensor[source]

Function to compute False Non Match Rate (FNMR) value when False Match Rate (FMR) value is equal to fmr_vals.

The metric calculates the quantile of positive distances higher than a given \(q\)-th quantile of negative distances.

Parameters
  • pos_dist – Distances between relevant samples.

  • neg_dist – Distances between non-relevant samples.

  • fmr_vals – Values of fmr (measured in quantiles) to compute the corresponding fnmr. For example, if fmr_values is (0.2, 0.4) we will calculate fnmr@fmr=0.2 and fnmr@fmr=0.4

Returns

Tensor of fnmr@fmr values.

Given a vector of \(N\) distances between relevant samples, \(u\), the false non-match rate (\(\textrm{FNMR}\)) is computed as the proportion of \(u\) below some threshold, \(T\):

\[\textrm{FNMR}(T) = \frac{1}{N}\sum\limits_{i = 1}^{N}H\left(u_i - T\right) = 1 - \frac{1}{N}\sum\limits_{i = 1}^{N}H\left(T - u_i\right)\]

where \(H(x)\) is the unit step function, and \(H(0)\) taken to be \(1\).

Similarly, given a vector of \(N\) distances between non-relevant samples, \(v\), the false match rate (\(\textrm{FMR}\)) is computed as the proportion of \(v\) above some threshold, \(T\):

\[\textrm{FMR}(T) = 1 - \frac{1}{N}\sum\limits_{i = 1}^{N}H\left(v_i - T\right) = \frac{1}{N}\sum\limits_{i = 1}^{N}H\left(T - v_i\right)\]

Given some interesting false match rate values \(\textrm{FMR}_k\) one can find thresholds \(T_k\) corresponding to \(\textrm{FMR}\) measurements

\[T_k = Q_v\left(\textrm{FMR}_k\right)\]

where \(Q\) is the quantile function, and evaluate the corresponding values of \(\textrm{FNMR}@\textrm{FMR}\left(T_k\right) \stackrel{\text{def}}{=} \textrm{FNMR}\left(T_k\right)\).

See:

Example

>>> pos_dist = np.array([0, 0, 1, 1, 2, 2, 5, 5, 9, 9])
>>> neg_dist = np.array([3, 3, 4, 4, 6, 6, 7, 7, 8, 8])
>>> calc_fnmr_at_fmr(pos_dist, neg_dist, fmr_vals=(0.1, 0.5))
tensor([0.4000, 0.2000])

calc_fnmr_at_fmr_rr

oml.metrics.embeddings.calc_fnmr_at_fmr_rr(rr: RetrievalResults, fmr_vals: Tuple[float, ...] = (0.1,)) Dict[str, Any][source]

For more details see calc_fnmr_at_fmr docs.

Parameters
  • rr – An instance of RetrievalResults.:

  • fmr_vals – Values of FMR to calculate FNMR at.

Returns

Metrics dictionary.

calc_topological_metrics

oml.functional.metrics.calc_topological_metrics(embeddings: Tensor, pcf_variance: Tuple[float, ...], categories: Optional[Union[LongTensor, ndarray]] = None, verbose: bool = False) Dict[str, Any][source]

Function to evaluate different topological metrics.

Parameters
  • embeddings – Embeddings matrix with the shape of [n_embeddings, embeddings_dim].

  • categories – Categories of embeddings to compute category wise metrics.

  • pcf_variance – Values in range [0, 1]. Find the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by pcf_variance.

  • verbose – Set True to see a progress bar.

Returns

Metrics dictionary.

calc_pcf

oml.functional.metrics.calc_pcf(embeddings: Tensor, pcf_variance: Tuple[float, ...]) List[Tensor][source]

Function estimates the Principal Components Fraction (PCF) of embeddings using Principal Component Analysis. The metric is defined as a fraction of components needed to explain the required variance in data.

Parameters
  • embeddings – Embeddings matrix with the shape of [n_embeddings, embeddings_dim].

  • pcf_variance – Values in range [0, 1]. Find the number of components such that the amount of variance that needs to be explained is greater than the fraction specified by pcf_variance.

Returns

List of linear dimensions as a fractions of the embeddings dimension.

Let \(X\) be a set of \(d\) dimensional embeddings. Let \(\lambda_1, \ldots, \lambda_d\in\mathbb{R}\) be a set of eigenvalues of the covariance matrix of \(X\) sorted in descending order. Then for a given value of desired explained variance \(r\), the number of principal components that explaines \(r\cdot 100\%%\) variance is the largest integer \(n\) such that

\[\frac{\sum\limits_{i = 1}^{n - 1}\lambda_i}{\sum\limits_{i = 1}^{d}\lambda_i} \leq r\]

The function returns

\[\frac{n}{d}\]

See:

Example

In the example bellow there are 4 vectors of length 10, and only first 4 dimensions have non-zero values. Its covariance matrix will have only 4 eigenvalues that are greater than 0, i.e. there are only 4 principal axes. So, in order to keep at least 50% of the information from the set, we need to keep 2 principal axes, and in order to keep all the information we need to keep 5 principal axes (one additional axis appears because the number of principal axes is superior to the desired explained variance threshold).

>>> embeddings = torch.eye(4, 10, dtype=torch.float)
>>> calc_pcf(embeddings, pcf_variance=(0.5, 1))
tensor([0.2000, 0.5000])

EmbeddingMetrics

class oml.metrics.embeddings.EmbeddingMetrics(dataset: Optional[IQueryGalleryLabeledDataset], cmc_top_k: Tuple[int, ...] = (5,), precision_top_k: Tuple[int, ...] = (5,), map_top_k: Tuple[int, ...] = (5,), fmr_vals: Tuple[float, ...] = (), pcf_variance: Tuple[float, ...] = (0.5,), postprocessor: Optional[IRetrievalPostprocessor] = None, metrics_to_exclude_from_visualization: Iterable[str] = (), return_only_overall_category: bool = False, visualize_only_overall_category: bool = True, verbose: bool = True)[source]

Bases: IMetricVisualisable

This class is designed to accumulate model outputs produced for every batch. Since retrieval metrics are not additive, we can compute them only after all data has been collected.

__init__(dataset: Optional[IQueryGalleryLabeledDataset], cmc_top_k: Tuple[int, ...] = (5,), precision_top_k: Tuple[int, ...] = (5,), map_top_k: Tuple[int, ...] = (5,), fmr_vals: Tuple[float, ...] = (), pcf_variance: Tuple[float, ...] = (0.5,), postprocessor: Optional[IRetrievalPostprocessor] = None, metrics_to_exclude_from_visualization: Iterable[str] = (), return_only_overall_category: bool = False, visualize_only_overall_category: bool = True, verbose: bool = True)[source]
Parameters
  • dataset – Annotated dataset having query-gallery split.

  • cmc_top_k – Values of k to calculate cmc@k (Cumulative Matching Characteristic)

  • precision_top_k – Values of k to calculate precision@k

  • map_top_k – Values of k to calculate map@k (Mean Average Precision)

  • fmr_vals – Values of fmr (measured in quantiles) to calculate fnmr@fmr (False Non Match Rate at the given False Match Rate). For example, if fmr_values is (0.2, 0.4) we will calculate fnmr@fmr=0.2 and fnmr@fmr=0.4. Note, computing this metric requires additional memory overhead, that is why it’s turned off by default.

  • pcf_variance – Values in range [0, 1]. Find the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by pcf_variance.

  • postprocessor – Postprocessor which applies some techniques like query reranking

  • metrics_to_exclude_from_visualization – Names of the metrics to exclude from the visualization. It will not affect calculations.

  • return_only_overall_category – Set True if you want to return only the aggregated metrics

  • visualize_only_overall_category – Set False if you want to visualize each category separately

  • verbose – Set True if you want to print metrics

setup(num_samples: Optional[int] = None) None[source]

Method for preparing metrics to work: memory allocation, placeholder preparation, etc. Has to be called before the first call of self.update_data().

update(embeddings: FloatTensor, indices: Union[LongTensor, List[int]]) None[source]
Parameters
  • embeddings – Representations of the dataset items containing in the current batch.

  • indices – Global indices of the dataset items within the range of (0, dataset_size - 1). Indices are needed to make sure that we can align dataset items and collected information.

compute_metrics() Dict[str, Any][source]

The output must be in the following format:

{
    "self.overall_categories_key": {"metric1": ..., "metric2": ...},
    "category1": {"metric1": ..., "metric2": ...},
    "category2": {"metric1": ..., "metric2": ...}
}

Where category1 and category2 are optional.

get_plot_for_queries(query_ids: List[int], n_instances: int, verbose: bool = True) Figure[source]
Parameters
  • query_ids – Indices of the queries

  • n_instances – Amount of the retrieved items to show

  • verbose – Set True for additional information

get_worst_queries_ids(metric_name: str, n_queries: int) List[int][source]
get_plot_for_worst_queries(metric_name: str, n_queries: int, n_instances: int, verbose: bool = False) Figure[source]
visualize() Tuple[Collection[Figure], Collection[str]][source]

Visualize worst queries by all the available metrics.